Notice: Undefined index: HTTP_ACCEPT_LANGUAGE in /var/www/kos.fs.cvut.cz/web/lib_locale.php on line 9

Notice: Undefined index: HTTP_ACCEPT_LANGUAGE in /var/www/kos.fs.cvut.cz/web/lib_locale.php on line 11
KOS.FS - fakultní nadstavba
  česky  čs
english  en
Metoda konečných prvků 0 (2112008)
Katedra:ústav mechaniky, biomech.a mechatr. (12105)
Zkratka:MKP0Schválen:29.04.2016
Platí do: ??Rozsah:1P+3C
Semestr:Kredity:6
Zakončení:KZJazyk výuky:CS
Anotace
Cílem bakalářského kurzu je seznámit posluchače
1. se základním principem fungování MKP jen na základě strukturní mechaniky (prutové soustavy a rámy) bez variačního počtu, vysvětlit vlastnosti deformační varianty řešení úlohy pružnosti
2. s geometrickými abstrakcemi v MKP jednak dle dimenzionality prostoru (1D, rovinné, rotačně symetrické a prostorové úlohy), jednak dle dimenzionality těles (tyčové/nosníkové, skořepinové a objemové modely)
3. s řešením procesů (statické, stacionární a dynamické úlohy)
4. s modelováním okrajových podmínek
5. s kontexty modelů (návrhové, kontrolní ?)
6. se zásadami tvorby modelů
7. ve cvičeních získání základních dovedností při tvorbě MKP modelu od vytváření geometrie přes síťování a zadání okrajových podmínek až po vyhodnocení výsledků na 3 až 5ti příkladech
Vyučující
Ing. Jiří Kuželka Ph.D.
Zimní 2023/2024
Ing. Jiří Kuželka Ph.D.
Zimní 2022/2023
Ing. Jiří Kuželka Ph.D.
Zimní 2021/2022
Osnova
1. Shrnutí základních pojmů mechaniky poddajných těles, tenzorové, maticové a indexové zápisy.
2. Silová a deformační metoda v diskrétních a spojitých modelech poddajných těles.
3. Variační principy ve statice-princip virtuálních posuvů, princip minima celkové potenciální energie. Ritzova metoda. Příklad aplikace Ritzovy metody s fouriérovskou bází.
4. Příklad aplikace Ritzovy metody s bází po částech lineární na tahu a tlaku v tyči. Základní pojmy MKP (uzel, prvek, tvarové funkce, u-delta operátor, matice tuhosti, ekvivalentní vnější síly)
5. diskretizace 1D kontinua ? tyčové prvky. Vlastnosti matice tuhosti (symetrie, singularita, pozitivní semidefinitnost).
6. Zobecnění požadavků na MKP diskretizaci kontinua. Zajištění spojitosti posuvů. Příklad rovinného trojúhelníkového elementu (tvarové funkce, u-delta operátor, matice tuhosti, ekvivalentní vnější síly, zatížení teplotou).
7. Struktura dat a organizace výpočtu MKP. Řešení soustav lineárních rovnic. Aplikace jednoduchých kinematických vazeb. Výpočet napětí, vyhlazování.
8. Diskretizace rámových konstrukcí nosníkovými prvky.
9. Základy teorie tenkých desek.
10. Deskové elementy. Formulace ?Flat? skořepinopvých elementů. Klasifikace skořepin. Napjatost ve skořepinách.
11. Lineární vazbové rovnice.
12. Pohybové rovnice MKP modelu. Přímá integrace v čase ? implicitní a explicitní.
13. Úloha vedení tepla.
Osnova cvičení
1. Shrnutí základních pojmů mechaniky poddajných těles, tenzorové, maticové a indexové zápisy.
2. Silová a deformační metoda v diskrétních a spojitých modelech poddajných těles.
3. Variační principy ve statice-princip virtuálních posuvů, princip minima celkové potenciální energie. Ritzova metoda. Příklad aplikace Ritzovy metody s fouriérovskou bází.
4. Příklad aplikace Ritzovy metody s bází po částech lineární na tahu a tlaku v tyči. Základní pojmy MKP (uzel, prvek, tvarové funkce, u-delta operátor, matice tuhosti, ekvivalentní vnější síly)
5. diskretizace 1D kontinua ? tyčové prvky. Vlastnosti matice tuhosti (symetrie, singularita, pozitivní semidefinitnost).
6. Zobecnění požadavků na MKP diskretizaci kontinua. Zajištění spojitosti posuvů. Příklad rovinného trojúhelníkového elementu (tvarové funkce, u-delta operátor, matice tuhosti, ekvivalentní vnější síly, zatížení teplotou).
7. Struktura dat a organizace výpočtu MKP. Řešení soustav lineárních rovnic. Aplikace jednoduchých kinematických vazeb. Výpočet napětí, vyhlazování.
8. Diskretizace rámových konstrukcí nosníkovými prvky.
9. Základy teorie tenkých desek.
10. Deskové elementy. Formulace ?Flat? skořepinopvých elementů. Klasifikace skořepin. Napjatost ve skořepinách.
11. Lineární vazbové rovnice.
12. Pohybové rovnice MKP modelu. Přímá integrace v čase ? implicitní a explicitní.
13. Úloha vedení tepla.
Literatura
Základní:
1. Španiel, M: Podklady k přednáškám. Dostupné elektronicky.
2. Kanócz, A. Španiel, M.: Metoda konečných prvků v mechanice poddajných těles. ČVUT v Praze.
3. Valenta, F. at al.: Pružnost a pevnost III. ČVUT v Praze, 2002
Doporučená:
3. Zienkiewicz, O. C.: The Finite Element Method in Engineering Science. McGraw--Hill, London
4. Bittnar, Z.Šejnoha, J.: Numerické metody mechaniky 1, 2. ČVUT v Praze, 1992.
data online/KOS/FS :: [Helpdesk] (hlášení problémů) :: [Obnovit] [Tisk] [Tisk na šířku] © 2011-2022 [CPS] v3.8 (master/4ba2e75e/2023-03-03/01:20)