Notice: Undefined index: HTTP_ACCEPT_LANGUAGE in /var/www/kos.fs.cvut.cz/lib_locale.php on line 9

Notice: Undefined index: HTTP_ACCEPT_LANGUAGE in /var/www/kos.fs.cvut.cz/lib_locale.php on line 11
KOS.FS - fakultní nadstavba
  česky  čs
english  en
Mechanics III. (E311108)
Katedra:ústav mechaniky, biomech.a mechatr. (12105)
Zkratka:Schválen:14.04.2011
Platí do: ??Rozsah:2+2
Semestr:*Kredity:6
Zakončení:Z,ZKJazyk výuky:EN
Anotace
Modeling. Dynamics of systems of particles. Dynamics of body. Mass distribution in a body. Inertia tensor. D'Alembert principle. Inertial effects of motion. Balancing of rotating bodies. Free body diagram method. Newton-Euler equations. Dynamics of multibody systems. Vibrations of systems with 1 DOF. Free oscillations. Forced oscillations excited by harmonic force and rotating unbalanced mass. Kinematic excitation. Oscillation of systems with two DOFs, torsional oscillation. Hertz theory of impact.
Vyučující
Ing. Martin Nečas MSc., Ph.D.
Zimní 2017/2018
Ing. Martin Nečas MSc., Ph.D.
Zimní 2016/2017
Ing. Martin Nečas MSc., Ph.D.
Zimní 2015/2016
Ing. Martin Nečas MSc., Ph.D.
Zimní 2014/2015
Ing. Martin Nečas MSc., Ph.D.
Zimní 2013/2014
Ing. Martin Nečas MSc., Ph.D.
Zimní 2012/2013
Ing. Martin Nečas MSc., Ph.D.
Zimní 2011/2012
Osnova
Modeling.
Dynamics of systems of particles.
Dynamics of body.
Mass distribution in a body.
Inertia tensor.
D'Alembert principle.
Inertial effects of motion.
Balancing of rotating bodies.
Free body diagram method.
Newton-Euler equations.
Dynamics of multibody systems.
Vibrations of systems with 1 DOF. Free oscillations.
Forced oscillations excited by harmonic force and rotating unbalanced mass.
Kinematic excitation.
Oscillation of systems with two DOFs, torsional oscillation.
Hertz theory of impact.
Osnova cvičení
Modeling.
Dynamics of systems of particles.
Dynamics of body.
Mass distribution in a body.
Inertia tensor.
D'Alembert principle.
Inertial effects of motion.
Balancing of rotating bodies.
Free body diagram method.
Newton-Euler equations.
Dynamics of multibody systems.
Vibrations of systems with 1 DOF. Free oscillations.
Forced oscillations excited by harmonic force and rotating unbalanced mass.
Kinematic excitation.
Oscillation of systems with two DOFs, torsional oscillation.
Hertz theory of impact.
Literatura
F.P.Beer, E.R.Johnson: Vector Mechanics for Engineers. Statics and Dynamics. McGraw-Hill, New York 1988.
Požadavky
Klíčová slova
data online/KOS/FS :: [Helpdesk] (hlášení problémů) :: [Obnovit] [Tisk] [Tisk na šířku] © 2011-2017 [CPS] v3.7 (master/94365653/2017-02-22/12:51)