česky  čs
english  en
Metoda konečných prvků v aplikacích (2011069)
Katedra:ústav technické matematiky (12101)
Zkratka:Schválen:01.06.2011
Platí do: ??Rozsah:2P+0C
Semestr:*Kredity:4
Zakončení:ZKJazyk výuky:CS
Anotace
Matematická teorie metody konečných prvků. Vektorový, Banachův a Hilbertův prostor. Metrika, norma, lineární forma, bilineární forma, skalární součin. Holderova a Cauchyho nerovnost. Lax-Milgramova věta. L2 a Lp prostory, oblast se spojitou hranicí, s Lipschitzovsky spojitou hranicí. Prostory H1 a Wkp. Věty o vnoření, věty o stopách, nerovnost Poincare-Friedrichsova. Greenova věta. Věta o substituci. Duální prostor, reflexivita.

Základní princip metody konečných prvků. Ukázka použití v jednorozměrné eliptické úloze. Souvislost slabého a klasického řešení. Odhady chyb. Abstraktní variační formulace. Ritzova formulace. Galerkinova formulace. Věta o ekvivalenci. Existence a jednoznačnost řešení. Diskrétní Ritzova a Galerkinova formulace. Existence diskrétního řešení (vlastnosti matice tuhosti). Abstraktní odhad chyby.
Vyučující
doc. RNDr. Petr Sváček Ph.D.
Letní 2019/2020
doc. RNDr. Petr Sváček Ph.D.
Letní 2018/2019
doc. RNDr. Petr Sváček Ph.D.
Letní 2017/2018
Osnova
Matematická teorie metody konečných prvků. Vektorový, Banachův a Hilbertův prostor. Metrika, norma, lineární forma, bilineární forma, skalární součin. Holderova a Cauchyho nerovnost. Lax-Milgramova věta. L2 a Lp prostory, oblast se spojitou hranicí, s Lipschitzovsky spojitou hranicí. Prostory H1 a Wkp. Věty o vnoření, věty o stopách, nerovnost Poincare-Friedrichsova. Greenova věta. Věta o substituci. Duální prostor, reflexivita.

Základní princip metody konečných prvků. Ukázka použití v jednorozměrné eliptické úloze. Souvislost slabého a klasického řešení. Odhady chyb. Abstraktní variační formulace. Ritzova formulace. Galerkinova formulace. Věta o ekvivalenci. Existence a jednoznačnost řešení. Diskrétní Ritzova a Galerkinova formulace. Existence diskrétního řešení (vlastnosti matice tuhosti). Abstraktní odhad chyby.

Aplikace MKP na dvourozměrnou úlohu: Dirichletova úloha s homogenní okrajovou podmínkou. Slabá formulace. Řešení na jednoduché oblasti pomocí lineárních konečných prvků. Výpočet a sestavení matice tuhosti. Slabá formulace 2D problémů s různými okrajovými podmínkami: Dirichletovy, Neumannovy okr. podmínky. Vlastnosti slabé formulace. Konstrukce prostoru konečných prvků a volba báze. Matice tuhosti prvku a globální matice tuhosti; podstata algoritmizace, zobrazení na referenční trojúhelník, sestavení globální matice tuhosti.

Řešení diskrétní úlohy - soustavy lineárních rovnic. Přímé metody. Iterační metody. Gradientní metody. Předpodmiňování.

Aplikace metody konečných prvků: rovnice vedení tepla, vlnová rovnice, problém konvekce-difuze, lineární problém pružnosti, Stokesův problém a Navierovy-Stokesovy rovnice.
Osnova cvičení
Literatura
[0] http://marian.fsik.cvut.cz/~svacek/fem/index.html

[1] P. Sváček and M. Feistauer. Metoda konečných prvků. Vydavatelství ČVUT, Praha, 2006.

[2] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, 1992.

[3] K. Rektorys. Variační metody. Academia, Prague, 1999

[4] E. Vitásek. Základy teorie numerických metod pro řešení diferenciálních rovnic. Academia, Prague, 1994

[5] K. Rektorys. Variational Methods in Mathematics, Science and Engineering. Reidel, Dordrecht, Holland, 1980

[6] P. G. Ciarlet. The Finite Element Methods for Elliptic Problems. North-Holland Publishing, 1979
Požadavky
Klíčová slova
metoda konečných prvků, numerické řešení parciálních diferenciálních rovnic, variační metody
data online/KOS/FS :: [Helpdesk] (hlášení problémů) :: [Obnovit] [Tisk] [Tisk na šířku] © 2011-2017 [CPS] v3.7 (master/180e4e5a/2019-10-09/02:51)