čs en |

Experimental Methods (E181101)

Departments: | ústav procesní a zpracov. techniky (12118) | ||

Abbreviation: | Approved: | 06.02.2009 | |

Valid until: | ?? | Range: | 2P+2C |

Semestr: | * | Credits: | 4 |

Completion: | Z,ZK | Language: | EN |

Annotation

How to measure temperature (thermocouples, thermistors, optical fibres, radiation thermometers), pressure transducers (and strain gauges), displacement and deformation (inductive probes, optical, cross correlation using multiple camera systems), flowrate (nozzles, turbines, electromagnetic, ultrasound, Coriolis forces).

Material properties measurement: rheometry (rotational and capillary viscometers) and elastic biomaterials (constitutive equations of e.g. vascular tissues and plastic materials). Real instruments are demonstrated during lectures and of course at laboratory experiments.

How to transfer and record data in PC. Interfaces and software (Labview).

Data processing and basic statistics. Evaluation of standard deviation of predicted quantities knowing errors of individual measurements (e.g. evaluate error of viscosity knowing error of measured rotational speed and torque of rotational rheometer). Analysis of measuring chains.

Regression analysis of recorded data (identification of mathematical models). Linear regression (orthogonal polynomials, estimate of errors and reliability intervals of identified parameters). How to linearize some engineering correlations. Calibration of multiple thermocouples and pressure transducers. Nonlinear methods (deterministic: Marquardt Levenberg, simplex methods, and stochastic methods of artificial intelligence: SOMA-self organizing mitigation algorithm).

Time courses processing. Integral characteristics of time responses. Moments of responses (mean response time and variance). Relationship between stimulus and response functions (convolution, transfer function). Laplace and Fourier transform of convolution and correlation, power spectral density. Discrete transforms (Nyquist frequency). How to smooth out a noise (local regression, median smoothing, Fourier filtering).

Material properties measurement: rheometry (rotational and capillary viscometers) and elastic biomaterials (constitutive equations of e.g. vascular tissues and plastic materials). Real instruments are demonstrated during lectures and of course at laboratory experiments.

How to transfer and record data in PC. Interfaces and software (Labview).

Data processing and basic statistics. Evaluation of standard deviation of predicted quantities knowing errors of individual measurements (e.g. evaluate error of viscosity knowing error of measured rotational speed and torque of rotational rheometer). Analysis of measuring chains.

Regression analysis of recorded data (identification of mathematical models). Linear regression (orthogonal polynomials, estimate of errors and reliability intervals of identified parameters). How to linearize some engineering correlations. Calibration of multiple thermocouples and pressure transducers. Nonlinear methods (deterministic: Marquardt Levenberg, simplex methods, and stochastic methods of artificial intelligence: SOMA-self organizing mitigation algorithm).

Time courses processing. Integral characteristics of time responses. Moments of responses (mean response time and variance). Relationship between stimulus and response functions (convolution, transfer function). Laplace and Fourier transform of convolution and correlation, power spectral density. Discrete transforms (Nyquist frequency). How to smooth out a noise (local regression, median smoothing, Fourier filtering).

Structure

1. A review of measurable properties and units. Revision of necessary background.

2. How to measure temperature (thermocouples, thermistors).

3. Temperature measurement using optical fibres (laser excited crystals] with application to microwave ovens, and radiation thermometers (single and dual-beam detectors, thermo cameras) with application to glass industry.

4. Pressure transducers (and strain gauges), displacement and deformation (inductive probes, optical, cross correlation using multiple camera systems),

5. Flowrate (nozzles, turbines, electromagnetic, ultrasound, Coriolis forces). Material properties measurement: rheometry (rotational and capillary viscometers)

6. Constitutive properties of elastic biomaterials (constitutive equations of e.g. vascular tissues and plastic materials).Real instruments are demonstrated during lectures and of course at laboratory experiments.

7. How to transfer and record data in PC. Interfaces and software (Labview).

8. Data processing and basic statistics. Evaluation of standard deviation of predicted quantities knowing errors of individual measurements (e.g. evaluate error of viscosity knowing error of measured rotational speed and torque of rotational rheometer). Analysis of measuring chains.

9. Regression analysis of recorded data (identification of mathematical models). Linear regression (orthogonal polynomials, estimate of errors and reliability intervals of identified parameters). How to linearize some engineering correlations. Calibration of multiple thermocouples and pressure transducers.

10. Nonlinear methods (deterministic: Marquardt Levenberg, simplex methods, and stochastic methods of artificial intelligence: SOMA-self organizing mitigation algorithm).

11. Time courses processing. Integral characteristics of time responses. Moments of responses (mean response time and variance). Relationship between stimulus and response functions (convolution, transfer function).

12. Laplace and Fourier transform of convolution and correlation, power spectral density. Discrete transforms (Nyquist frequency). How to smooth out a noise (local regression, median smoothing, Fourier filtering).

13. Discussion of labory experiments.

2. How to measure temperature (thermocouples, thermistors).

3. Temperature measurement using optical fibres (laser excited crystals] with application to microwave ovens, and radiation thermometers (single and dual-beam detectors, thermo cameras) with application to glass industry.

4. Pressure transducers (and strain gauges), displacement and deformation (inductive probes, optical, cross correlation using multiple camera systems),

5. Flowrate (nozzles, turbines, electromagnetic, ultrasound, Coriolis forces). Material properties measurement: rheometry (rotational and capillary viscometers)

6. Constitutive properties of elastic biomaterials (constitutive equations of e.g. vascular tissues and plastic materials).Real instruments are demonstrated during lectures and of course at laboratory experiments.

7. How to transfer and record data in PC. Interfaces and software (Labview).

8. Data processing and basic statistics. Evaluation of standard deviation of predicted quantities knowing errors of individual measurements (e.g. evaluate error of viscosity knowing error of measured rotational speed and torque of rotational rheometer). Analysis of measuring chains.

9. Regression analysis of recorded data (identification of mathematical models). Linear regression (orthogonal polynomials, estimate of errors and reliability intervals of identified parameters). How to linearize some engineering correlations. Calibration of multiple thermocouples and pressure transducers.

10. Nonlinear methods (deterministic: Marquardt Levenberg, simplex methods, and stochastic methods of artificial intelligence: SOMA-self organizing mitigation algorithm).

11. Time courses processing. Integral characteristics of time responses. Moments of responses (mean response time and variance). Relationship between stimulus and response functions (convolution, transfer function).

12. Laplace and Fourier transform of convolution and correlation, power spectral density. Discrete transforms (Nyquist frequency). How to smooth out a noise (local regression, median smoothing, Fourier filtering).

13. Discussion of labory experiments.

Structure of tutorial

1. Biomechanics: hi-tech methods for measurement deformation of blood vessels loaded by inner pressure (confocal optical probes, spatial imaging using two high speed cameras and cross correlation of images). Described on www presentation.

2. Thermal properties of liquids. Application of thermocouples.

2. Thermal properties of liquids. Application of thermocouples.

Literarture

Requirements

Basic mathematics (at a secondary school level, it means derivatives and ordinary differential equations). Basic physics (also at a secondary school level, Newton's law, electromagnetics...)

Keywords

measurement, temperature, pressure, flowrate, forces, strain gauge, displacement, cross-correlation, regression analysis, artificial inteligence,data filtering, Fourier transform, Laplace transform, transfer function, stimulus response method,

data online/KOS/FS :: [Helpdesk] (hlášení problémů) :: [Reload] [Print] [Print wide] © 2011-2022 [CPS] v3.8 (master/4ba2e75e/2023-03-03/01:20)