Internal Combustion Engines (E211126)
Katedra: | ústav autom.,sp.motorů a kolej.voz. (12120) |
Zkratka: | | Schválen: | 25.02.2013 |
Platí do: | ?? | Rozsah: | 4P+3C |
Semestr: | * | Kredity: | 7 |
Zakončení: | Z,ZK | Jazyk výuky: | EN |
Anotace
To provide information concerning fundamentals of internal combustion engines (ICE): principles of combustion, formation of pollutants, gas exchange, super- and turbocharging; description of tools for fuel injection, mixture formation, valve gears, combustion realization, exhaust aftertreatment, lubrication and cooling.
Vyučující
prof. Ing. Jan Macek DrSc.
Zimní 2023/2024
Ing. Antonín Mikulec
Zimní 2023/2024
prof. Ing. Jan Macek DrSc.
Zimní 2022/2023
prof. Ing. Jan Macek DrSc.
Zimní 2021/2022
Ing. Antonín Mikulec
Zimní 2021/2022
Osnova
1. Principles of ICE performance; laws of thermodynamics; conservation laws for open system; basic distribution of ICE. Operation and control of system engine/load. Main engine characteristics.
2. ICE cycles - HP (high pressure) phase (closed system) in real and idealized form. Idealized cycles, example of analytical efficiency calculation. T-s diagram, efficiency assessment. Carnot cycle, real limits of ICE cycles (T, p, v). Stirling cycle.
3. LP (low pressure) phase (charge exchange) - real and idealized form at 4 stroke engine. 2 stroke engines. Volumetric efficiency and cylinder charging. Indicated efficiency and pumping work. Mechanical efficiency.
4. Schemes of gas turbines and super-turbocharged engines. Gas turbine cycle (Ericsson-Brayton), heat regeneration. Adiabatic irreversible changes. Principle of turbine performance - momentum change at blades.
5. Fuels - chemical components of HC fuels. Raw oil processing. Stoichiometry of fuel/air mixtures. Burnt gas composition.
6. Thermochemistry of fuels - Hess and Kirchhoff equations, calorific value. Reaction mechanisms. Laws of chemical kinetics / Guldberg-Waage&Arrhenius. Reaction equilibrium. Dissociation of combustion products.
7. Adiabatic flame temperature. Chemical efficiency. Elementary processes in mixture preparation, combustion and heat transfer - air/fuel mixing, pre-flame reactions, ignition delay, premixed flame - deflagration or detonation, diffusion flame.
8. Specific features of unsteady combustion in a spray. Main pollutants and their formation during combustion in different flames. Pollution measurement and regulation.
9. Heat transfer to cooled walls. Real compression and expansion processes. Engine HP process simulation, thermodynamic analysis of engine cycle.
10. Engine LP (low pressure) process simulation. Basic equations for charge exchange coefficients and engine efficiency. Tools of torque control.
11. Mixture preparation (in general). Engine cycle with external mixture preparation.
12. External mixture preparation: Decomposition of fuel spray. Charge motion in cylinder. Injection systems for spark-ignition engines. Mixture formation in DISI (GDI) engines.
13. Combustion in spark-ignition engines. Ignition systems. Combustion chambers. Injection systems for internal mixture preparation.
14. Injection systems and internal mixture formation. Cylinder charge exchange.
15. Energy balance ("thermal") for piston engines, cooling systems.
16. Mechanical charging of engines. Combustion turbines and turbochargers.
17. Sealing of a piston - piston ring performance. Engine lubrication, lubricating oils.
18. Combustion turbines and turbochargers.
19. Coaction of turbocharger with 4-stroke engine. Work cycle of turbocharged engine. Exhaust system.
20. Configuration of turbocharged engines, control of charge pressure.
21. Engine charakteristics. Emissions. Operating parameters.
22. Engine noise. Similarity of piston engines. Determination of main dimensions.
23. Design criteria.
24. Future for combustion engines.
Literatura
Introduction to Internal Combustion Engines, Richard Stone
Advanced Engine Technology, Heinz Heisler
Internal Combustion Engine Fundamentals, John Heywood
The Internal Combustion Engine in Theory and Practice, Charles F. Taylor
Internal Combustion Engines, V. Ganesan
Automobiltechnisches Handbuch, Richard Bussien, Gustav Goldbeck
Požadavky
Information on the organisation of the course, special conditions for the award of ungraded assessment, graded assessment or examination and study materials can be found on the study material server https://studium.fs.cvut.cz/studium/u12120/E211026_ICE .
Klíčová slova
Engine working cycle, engine performance, cylinder charge exchange, combustion of cylinder charge, ignition, fuel injection