Obyčejné diferenciální rovnice (W01T002)
Katedra: | ústav technické matematiky (12101) |
Zkratka: | | Schválen: | 16.05.2007 |
Platí do: | ?? | Rozsah: | 60B |
Semestr: | Z | Kredity: | |
Zakončení: | ZK | Jazyk výuky: | CS |
Anotace
Navazující kurs na základní kurs obyčejných diferenciálních rovnic v předmětu Matematika III. Poskytuje podrobný přehled pojmů a technik pro řešení rovnic prvního řádu. Modelování pomocí obyčejných diferenciálních rovnic. Rovnice 1. řádu, autonomní rovnice, rovnice v diferenciálech. Vyšetřování vlastností řešení bez znalosti vzorce pro řešení a bez použití numerických metod (kvalitativní analýza). Exploze řešení, globální řešení - metoda apriorních odhadů. Autonomní soustavy, Hamiltonovy soustavy a soustavy s tlumením (konzervativní a disipativní systémy). Parciální diferenciální rovnice prvního řádu (fakultativně). Dynamické systémy a semigrupy - základní pojmy a vlastnosti.
Osnova
1-2. Přehled metod řešení obyčejných diferenciálních rovnic prvního řádu. Geometrický význam diferenciální rovnice. Rovnice v diferenciálech.
3-4. Autonomní soustavy. Exploze řešení. Globální řešení. Metoda apriorních odhadů.
5-6. Dynamické systémy. Semigrupy. Základní pojmy a vlastnosti.
7-8. Parciální diferenciální rovnice prvního řádu (fakultativně).
9-10. Hamiltonovy soustavy a soustavy s tlumením. Konzervativní a disipativní systémy.
11-12. Stabilita lineárních a nelineárních soustav. Kritéria stability. Atraktory.
13-14. Stabilita a linearizace. Stabilita a ljapunovské funkce.
Osnova cvičení
1-2. Přehled metod řešení obyčejných diferenciálních rovnic prvního řádu. Geometrický význam diferenciální rovnice. Rovnice v diferenciálech.
3-4. Autonomní soustavy. Exploze řešení. Globální řešení. Metoda apriorních odhadů.
5-6. Dynamické systémy. Semigrupy. Základní pojmy a vlastnosti.
7-8. Parciální diferenciální rovnice prvního řádu (fakultativně).
9-10. Hamiltonovy soustavy a soustavy s tlumením. Konzervativní a disipativní systémy.
11-12. Stabilita lineárních a nelineárních soustav. Kritéria stability. Atraktory.
13-14. Stabilita a linearizace. Stabilita a ljapunovské funkce.
Literatura
[1] Leopold Herrmann: Obyčejné diferenciální rovnice - řady. Komentované přednášky pro předmět Matematika III. Nakladatelství ČVUT, Praha 2006.
[2] Leopold Herrmann: Písemné materiály pro přednášku.
[3] Ferdinand Verhulst: Nonlinear systems and evolution equations. Second edition. Springer-Verlag 1996. ISBN 3-540-60934-2.
Klíčová slova
diferenciální rovnice prvního řádu, autonomní soustavy, fázová rovina, dynamické systémy, stabilita řešení, metoda linearizace, ljapunovské funkce.