česky  čs
english  en
Matematické modelování v proudění (W01A014)
Departments:ústav technické matematiky (12101)
Abbreviation:Approved:11.10.2016
Valid until: ??Range:60
Semestr:ZCredits:
Completion:ZKLanguage:CS
Annotation
Předmět je věnován vzájemným souvislostem mezi fyzikálním popisem děje, matematickým modelem, postupy numerického řešení a interpretací numerických výsledků.
Teacher's
prof. Ing. Jaroslav Fořt CSc.
Zimní 2018/2019
prof. Ing. Jaroslav Fořt CSc.
Zimní 2017/2018
prof. Ing. Jaroslav Fořt CSc.
Zimní 2016/2017
Structure
Obecný zákon zachování v integrálním tvaru. Navier-Stokesovy, Eulerovy rovnice, transportní rovnice jako zákony zachování. Některé další úlohy. Matematické vlastnosti výchozích rovnic. Riemanův problém.
Princip metody konečných objemů. Moderní upwind schémata v 1D, rozšíření na vyšší řád přesnosti.
Matematické modely vybraných případů proudění, formulace úloh. Příklady technických aplikací.
Structure of tutorial
Literarture
Blazek, J.: Computational Fluid Dynamics: Principles and Applications, 2001, Elsevier.
Dvořák, R., Kozel, K.: Matematické modelování v aerodynamice, 1996, Vydavatelství ČVUT.
Fořt, J., Kozel, K., Fürst, J., Halama, J., Dobeš, J.: Numerická simulace proudění I, 2005, Vydavatelství ČVUT.
Toro, E.F.: Riemann solvers and Numerical Methods for Fluid Dynamics, 1997, Springer.
Le Veque, R.: Finite Volume Methods For Hyperbolic Problems, 2004, Cambridge University Press.
Requirements
Keywords
Eulerovy rovnice, Navierovy-Stokesovy rovnice, metoda konečných objemů, metoda konečných diferencí
data online/KOS/FS :: [Helpdesk] (hlášení problémů) :: [Reload] [Print] [Print wide] © 2011-2017 [CPS] v3.7 (master/5b4923ae/2019-02-18/09:35)