česky  čs
english  en
Umělá inteligence (2312014)
Katedra:ústav mechaniky, biomech.a mechatr. (12105)
Zkratka:UISchválen:16.01.2018
Platí do: ??Rozsah:2+0
Semestr:Kredity:2
Zakončení:KZJazyk výuky:CS
Anotace
Úlohy a výzvy umělé inteligence (UI), historie UI, Turingova, Minského a Kotkova definice UI, přístupy matematické logiky. SW a HW prostředky pro rychlý vývoj a implementace UI, komerční vs. open-source nástroje, moderní trendy pro UI (CUDA, neuromorfní HW, cloudové technologie). Produkční systémy, reprezentace znalostí a expertní systémy, rekomendační systémy. UI založená na strojovém učení a zpracování dat, přehled nástrojů výpočetní inteligence pro UI. Klasifikace, rozhodovací stromy, stromové algoritmy, gradient boosting. Neuronové sítě (NS), rozdělení, základní pojmy a principy,mělké vs. hluboké NS (Deep Learning). Inkrementální a dávkové algoritmy strojového učení s učitelem, (Levenberg-Marquardt, konjugované gradienty, entropické kriteriální funkce). Lineární a polynomiální neuronové architektury, MLP, Extreme Machine Learning, Echo State NS. Třídění dat (clustering), samoorganizační NS (SOM). Redukce dimenzionality, PCA, autoenkodéry, Konvoluční sítě, Deep Learning, hluboké neuronové sítě. Neurčité informace a neurčitosti v datech. Fuzzy logika a fuzzy množiny, Fuzzy pravidlové systémy , Neuro-Fuzzy systémy . Fuzzy množiny druhého typu, nejistota 2.typu ve vztahu k chybě měřených dat.
Vyučující
doc. Ing. Ivo Bukovský Ph.D.
Letní 2018/2019
Osnova
1) Úlohy a výzvy umělé inteligence (UI), historie UI, Turingova, Minského a Kotkova definice UI, přístupy matematické logiky.
2) SW a HW prostředky pro rychlý vývoj a implementace UI, komerční vs. open-source nástroje, moderní trendy pro UI (CUDA, neuromorfní HW, cloudové technologie).
3) Produkční systémy, reprezentace znalostí a expertní systémy, rekomendační systémy.
4) UI založená na strojovém učení a zpracování dat, přehled nástrojů výpočetní inteligence pro UI.
5) Klasifikace, rozhodovací stromy, stromové algoritmy, gradient boosting.
6) Neuronové sítě (NS), rozdělení, základní pojmy a principy,mělké vs. hluboké NS (Deep Learning).
7) Inkrementální a dávkové algoritmy strojového učení s učitelem, (Levenberg-Marquardt, konjugované gradienty, entropické kriteriální funkce).
8) Lineární a polynomiální neuronové architektury, MLP, Extreme Machine Learning, Echo State NS
9) Třídění dat (clustering), samoorganizační NS (SOM).
10)Redukce dimenzionality, PCA, autoenkodéry,
11) Konvoluční sítě, princip Deep Learning a hluboké neuronové sítě.
12) Neurčité informace a neurčitosti v datech.
13) Fuzzy logika a fuzzy množiny, Fuzzy pravidlové systémy, Neuro-Fuzzy systémy.Fuzzy množiny druhého typu, nejistota 2.typu ve vztahu k chybě měřených dat.
Osnova cvičení
Literatura
Mařík, V. a kol.: Umělá inteligence 1-4, Academia, Praha 1993-2003
Valášek, M. a kol.: Mechatronika, Vydavatelství ČVUT, Praha 1996
Požadavky
Klíčová slova
Umělá inteligence
data online/KOS/FS :: [Helpdesk] (hlášení problémů) :: [Obnovit] [Tisk] [Tisk na šířku] © 2011-2017 [CPS] v3.7 (master/180e4e5a/2019-10-09/02:51)